p62 mutations, ubiquitin recognition and Paget's disease of bone.

نویسندگان

  • R Layfield
  • J R Cavey
  • D Najat
  • J Long
  • P W Sheppard
  • S H Ralston
  • M S Searle
چکیده

Functional analyses of PDB (Paget's disease of bone)-associated mutants of the p62 [also known as SQSTM1 (sequestosome 1)] signalling adaptor protein represent an interesting paradigm for understanding not only the disease mechanism in this skeletal disorder, but also the critical determinants of ubiquitin recognition by an ubiquitin-binding protein. The 11 separate PDB mutations identified to date all affect the C-terminal region of p62 containing the UBA domain (ubiquitin-associated domain), a ubiquitin-binding element. All of these mutations have deleterious effects on ubiquitin binding by p62 in vitro, and there is evidence of an inverse relationship between ubiquitin-binding function and disease severity. The effects on ubiquitin-binding function of most of the mutations can be attributed to either reduced UBA domain stability, and/or the mutations affecting the presumed ubiquitin-binding interface of the UBA domain. However, a subset of the mutations are more difficult to rationalize; several of these affect sequences of p62 outside of the minimal ubiquitin-binding region, providing insights into non-UBA domain sequences within the host protein which mediate ubiquitin-binding affinity. The p62 mutations are presumed to result in activation of (osteoclast) NF-kappaB (nuclear factor kappaB) signalling. Understanding how loss of ubiquitin-binding function of p62 impacts on signal transduction events in osteoclasts will undoubtedly further our understanding of the disease mechanism in PDB at the molecular level.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Disruption of ubiquitin-mediated processes in diseases of the brain and bone.

A role for ubiquitin in the pathogenesis of human diseases was first suggested some two decades ago, from studies that localized the protein to intracellular protein aggregates, which are a feature of the major human neurodegenerative disorders. Although several different mechanisms have been proposed to connect impairment of the UPS (ubiquitin-proteasome system) to the presence of these 'ubiqu...

متن کامل

Structure of the ubiquitin-associated domain of p62 (SQSTM1) and implications for mutations that cause Paget's disease of bone.

The p62 protein (also known as SQSTM1) mediates diverse cellular functions including control of NFkappaB signaling and transcriptional activation. p62 binds non-covalently to ubiquitin and co-localizes with ubiquitylated inclusions in a number of human protein aggregation diseases. Mutations in the gene encoding p62 cause Paget's disease of bone (PDB), a common disorder of the elderly character...

متن کامل

Structural and functional studies of mutations affecting the UBA domain of SQSTM1 (p62) which cause Paget's disease of bone.

Mutations affecting the UBA (ubiquitin-associated) domain of SQSTM1 (Sequestosome 1) (p62) are a common cause of Paget's disease of bone. The missense mutations resolve into those which retain [P392L (Pro(392)-->Leu), G411S] or abolish (M404V, G425R) the ability of the isolated UBA domain to bind Lys-48-linked polyubiquitin. These effects can be rationalized with reference to the solution struc...

متن کامل

The adaptor protein p62/SQSTM1 in osteoclast signaling pathways

Paget's disease of bone (PDB) is a skeletal disorder characterized by focal and disorganized increases in bone turnover and overactive osteoclasts. The discovery of mutations in the SQSTM1/p62 gene in numerous patients has identified protein p62 as an important modulator of bone turnover. In both precursors and mature osteoclasts, the interaction between receptor activator of NF-κB ligand (RANK...

متن کامل

Pathobiology of Paget's Disease of Bone

Paget's disease of bone is characterized by highly localized areas of increased bone resorption accompanied by exuberant, but aberrant new bone formation with the primary cellular abnormality in osteoclasts. Paget's disease provides an important paradigm for understanding the molecular mechanisms regulating both osteoclast formation and osteoclast-induced osteoblast activity. Both genetic and e...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biochemical Society transactions

دوره 34 Pt 5  شماره 

صفحات  -

تاریخ انتشار 2006